Category Archives: Uncategorized

Remote and preditive maintenance of medical equipment

Remote and predictive maintenance of medical equipment in the era of connected healthcare

Digitalization is transforming the medical and healthcare system worldwide, with IoT technologies playing an increasingly fundamental role, particularly in the remote and predictive maintenance of medical equipment. Cloud IoT technologies allow for the remote management and monitoring of medical devices and the ability to perform advanced analysis of the captured data – both in the cloud or at the edge. This brings an impressive range of practical applications and benefits to medical equipment manufacturers and healthcare professionals alike.

Cloud IoT supports predictive and remote maintenance to help healthcare organizations monitor, maintain, and optimize their equipment in real time. Here’s what you need to know about what it can do, the barriers to IoT integration and what to expect in the future.

Predictive maintenance of medical equipment

Performance data from a medical device can be collected and analyzed remotely by healthcare professionals and equipment manufacturers to anticipate malfunctions before they happen. Medical devices contain pumps, filters and parts that, like any other machine, have a certain life cycle and need to be replaced at intervals. Typically, hospital staff have technicians on-site to check these machines and their components to make sure they’re working properly, but if an issue is missed and the machine breaks, it can cause downtime and disruption to patient treatments.

To make this process more efficient, and to reduce the need for manual checks and the likelihood of breakdowns, IoT technologies can be used to read the data from the machine’s components to establish how long it’s been in operation and how long it has left before it reaches the end of its life cycle and needs to be replaced. The hospital maintenance group can then be alerted in advance so replacement parts can be ordered and fitted.

Remote maintenance

IoT also enables the remote configuration of medical devices between patients. Technicians or medical staff would usually be required to change the settings of medical devices manually, for example, amending the settings on a dialysis machine between one patient and the next to ensure the correct treatment is being given. IoT can enable the required patient settings to be configured remotely at the back end to coincide with the different appointments. The only intervention required from medical staff is to clean the machines between each use and to welcome the patient, freeing up more medical time and resource to be focused elsewhere.

Retrofitted vs IoT-native design for medical devices

To enable the remote and predictive maintenance of medical equipment, devices need to have IoT capability built into them. This can happen in two ways:

  • Retrofitting is adapting existing medical devices to become IoT connected devices. This requires the IoT gateway to be built into an existing asset’s board or box so the manufacturer can interface the machine’s electronics and read its data, allowing analysis to take place and the necessary rules and alerts to be set up.
  • IoT-native design is employed when the medical equipment manufacturer decides that the next generation of machines will be IoT connected from the roots. This requires an upfront understanding of what medical device data needs to be analyzed and what alerts and triggers need to be put in place before it moves onto installation and trial. The machines are then manufactured with this capability built into the machine.

The market – both in healthcare and other verticals – is currently more retrofitted design than IoT-native, but specialist IoT software skills and support are required throughout both processes to ensure success.

What are the challenges to IoT integration in medical equipment?

Medical equipment manufacturers will often come across two main barriers to deploying the technology. The first is its perceived complexity – it’s incredibly rare that medical manufacturers have the required IoT skills and expertise in-house capable of delivering their desired project, and for this reason, integrating IoT is often perceived as ‘too complex’. Many need to form a partnership with a specialist they can trust, that not only offers the hardware and software building blocks needed to deliver their vision, but the ongoing training and skills needed to manage the project.

The second is security – a well-designed IoT architecture for distributed medical devices needs to offer solid end-to-end security and provide local processing capabilities to enable functionality like access to technical data and configuration management. When dealing with sensitive patient data, there are a number of stringent security certifications to consider, with each component of the device undergoing rigorous testing.

There are different levels of certification required when the data and machines are kept in the hospital environment, compared to when data is transferred through 3G, 4G, and now 5G, infrastructures. Your IoT partner should be able to lead you through the process and ensure full compliancy, regardless of where and how your devices will be used.

Where is the technology going in future?

As more manufacturers actively look to integrate IoT capability in devices to enable remote and predictive maintenance of medical equipment, IoT-native design is likely to become the norm. Once this data collection and analysis process becomes more established, the functionality can be taken a step further to enable an automated ordering process. Data from machine filters, pumps or sensors can be automatically shared with the manufacturer or supplier of the part so that they can be altered when it’s nearing the end of its life cycle and a replacement part should be sent out.

As a result of the Covid-19 pandemic, we’re also likely to see more medical devices moving into the home of the patient to enable remote treatment. More medical device manufacturers are designing and building new devices that can be moved and connected with beyond the hospital environment, forming partnerships with IoT specialists to enable the effective integration of IoT technologies with all the necessary safety and data measures in place.

To learn more about the integration of IoT technologies in the medical sector, or to find out how we can help with your next project, simply get in touch.

IoT project risks

3 IoT project risks that prevent companies from adopting IoT solutions (and how to avoid them)

The Internet of Things (IoT) has brought a lot of benefits and disruptive innovations. Despite this, there are 3 main IoT project risks that prevent companies from adopting IoT solutions:

  • IoT security;
  • lack of open standards;
  • integrating legacy M2M/OT equipment with IoT applications.

Driverless cars, fitness trackers, smart manufacturing, precision farming, connected clothing, smart meters that measure utilities, smart sensors to detect mechanical failures, medical devices that can monitor diseases – everywhere you look around the globe there is talk about the Internet of Things.

IoT’s potential is endless. It changes the way that businesses, government agencies and consumers operate and interact to drive new business opportunities; it increases profits, lowers operating costs and increases productivity . Demand for connected devices is growing exponentially. Many companies – from large, multinational enterprise to SMEs – are all looking to capitalize on this trend.

Let’s analyze the 3 major IoT project risks and the way to avoid them. This would allow companies to start integrating IoT solutions and embracing digital transformation.

IoT security: the number one IoT project risk

IoT project risk 1: IoT Security
The main concern of companies adopting IoT solutions is data security

One of the problems that companies are facing with the growth of IoT is security. Connected devices are being developed at a very fast pace with a general lack of security standards or protocols. Companies must look for smart products with security in mind from day one when adopting IoT solutions. This will avoid the risk of breach vulnerabilities.

Security is a major IoT project risk and is today a more complex task. IoT devices are connected and interconnected into a network and are designed to collect and store increasing amount of data – even sensitive ones. Moreover, smart devices need to connect to each other, to the Internet and to the cloud to exchange data. IoT security issues must be addressed at all levels, from the edge to the cloud.  

In earlier years firewall perimeters and virtual private networks enabled IT security. The widespread use of mobile phones, connected applications and the increased level of sophistication of the attackers has led to breaches in those fortified perimeters.

Because of the lack of best practices, security could dramatically increase the cost of IoT projects. Moreover, this lack of IoT security has the potential to scare users away from adopting IoT technologies.

If companies, government organizations and consumers cannot trust that their data is safe, they will become discouraged at the thought of adopting IoT solutions and buy smart devices. Once the breaches begin, adoption of IoT devices is sure to slow down.

Securing IoT devices is not a simple task, especially when projects employ large, globally-distributed deployments. A single security product solution cannot enable end-to-end security: there is no silver bullet. It is essential to look at the entire system. Security must be a fundamental part of the overall architecture of an IoT project, i.e. be built in, not added afterwards.

Lack of open standards

Most IoT edge solutions are based on the integration of sensors, actuators, PLCs, field buses and protocols. Quite often, the specific combination of new and legacy OT technology is the first challenge to overcome when creating an IoT solution.

For example, PLCs are normally connected through serial or LAN interfaces using field-bus communications protocols. While some of these technologies and protocols are open standards, there are literally hundreds that are proprietary and specific to vendors and vertical solutions. Examples in the industrial domain there are field protocols like Modbus or OPC UA, in transportation CAN, or in energy M-Bus.

IoT project risk 2: lack of open standards
Open standards allow a better integration between IoT components

Since there are many different devices, operating systems and programming languages employed on edge infrastructures, the lack of open standards stands among major IoT project risks. It represents a barrier for companies. They would think that adopting IoT solutions is too complex and a waste of time and resources. 

Again, the IoT security issue shows up when there is a lack of open standards. While plenty of standards exist in the traditional IT world, they have yet to be applied in a consistent manner; this would protect IoT devices – deployed at the edge – from breach.

This means that there is a very vulnerable IoT ecosystem with vendors using different hardware, software and third party services, as well as APIs and patch methods. To achieve IoT security, there is the need to establish solid solutions for device discovery with secure identity, authentication and encrypted communications or the underlying protocols are subject to abuse.

Improper security of just one device could result in situations where many other devices in the network become vulnerable. To succeed with IoT, end-to-end security must be a priority. Device manufacturers and software developers need a security model that has a foundation based on open and industry standards to ensure platform and vendor interoperability and incorporate best practices.

Connecting legacy equipment to IoT

To enable IoT solutions that integrate data collected in the field with enterprise IT applications, companies need to connect their legacy equipment (e.g. industrial machinery and PLCs, on-board and in-vehicle components, power meters, etc.) to the Internet.

The simplest, yet most expensive solution to ensure seamless integration between field equipment and IoT applications is to replace the old equipment with new, IoT-ready one. If a person wanted to remotely access and monitor his home heater, he could replace it with a more recent one. The new one would integrate an IoT gateway that can send temperature, consumption and other useful data to my smartphone and make them accessible on the vendor’s mobile app.

This is a so-called “greenfield” solution, and is ideal for newborn companies. For the vast majority of companies, to completely replace the old equipment is way too expensive; there is the need to adapt it to the IoT project requirements. It is therefore necessary to retrofit field assets with sensors or IoT smart devices and gateways. This again arises issues related to IoT security or to the lack of open standards. 

IoT risk 3: retrofit legacy industrial equipment
Retrofitting legacy equipment a big challenge in the IoT adoption

In industrial applications in particular, M2M machinery and components (such as sensors, actuators and PLCs) communicate with different protocols. The majority of sensors and IoT gateway solutions are designed to target a specific set of protocols. This ends up having a crowd of devices with different protocols that need to be integrated and managed within the same IT/cloud application.

How to reduce IoT project risks and enhance IoT adoption?

Under the brand name of Everyware IoT, Eurotech integrates a set of hardware and software components to enable end-to-end IoT solutions. They are secure, completely managed, integrated and based on open standards.

Everyware IoT solves all the above-mentioned issues related to IoT projects adoption: